紫光文学城

手机浏览器扫描二维码访问

第105章质数四(第1页)

凡事都有第一次,而历史上第一个发现质数的人是谁也是众说纷纭。有说欧文,而我却查不到。欧文是姓还是名是争议的,毕竟两种分法都是存在的。一般来说,人们提到的名字都是姓。比如毕加索的名字是巴勃罗,毕加索是他的姓。欧文.卡内斯基的欧文是名,而凯里.欧文中的欧文就是姓。欧文.卡内斯基是1905年才出生的,而质数在毕达哥拉斯时代就已经在分析了。所以,第一个人不可能是他。有人说是毕达哥拉斯。首先,他的确是对数论有研究。自然包括质数。还有的说是欧几里得,然而他的研究侧重点在几何。还有就是毕达哥拉斯的年代比他更早,大约有300年。虽然毕达哥拉斯不是希腊最早的数学家,但是我想除了泰利斯之外没有别人比他更加深入地研究数学了。

说起质数,就要说莱默。据说,他一个人发现了1000万个质数。在莱默60岁时,大型计算机被发明。而他正是通过计算机独立发现了1000万个质数。要知道在5万之内只有不到一千到质数,而1000万是什么概念。其实,说起计算机也是和数学有关的。如果不懂数学,就学不会电脑编程。当年制造计算机器的不是别人,正是英国数学家图灵。有部电影《模仿游戏》就是讲的他的故事。学编程有两个,一是算法,二是二进制。在制作原子弹时进行的计算的草稿纸有几千斤,而我国的科学家就是因为没有计算机而才这样的。因此,大型国家科技工程中计算是极为重要的。没有计算机,一切都变得复杂。

质数的通项公式一直是数学家的梦想,然而他们谁都没有实现。只要你找到了通项公式,那么你就是数学中的牛顿和爱因斯坦。数学王子高斯和非欧几何的创始人之一的黎曼都在质数领域贡献过自己的力量。目前的最大质数是2的74207281次方减去一。这个数字已经难以用语言来描述了。而目前发现的最大的梅森素数是2的43112609次方减去一。通过观察可以发现,梅森素数可以很大。核桃似乎在以前忘记了说质数的历史,今天补上了。

在数论中,模论是其中一种理论。模论和域论一样是建立在整环的基础之上,属于环论的发展。而它的重要概念模是指两个数除以相同的数都会有余数,而这种关系就是模。在考虑模的时候,我就想到了质数。两个质数关于不同模的同余。23=3×7+2,17=3×5+2。由于除数不同,所以同余情况就不同。上述结论只是表示其中一种情况,而不是确定质数是怎样的。为了以后方便,我提出单纯合数的概念。什么是单纯合数呢?它就是它的每个质因数的数量都是一。如26,而质数的平方数不是单纯合数。时间久了也许大家忘了,邻数是指一个数的前后相邻的两个数。需要注意的是邻数容易和一邻数混淆。一邻数是指数位的相邻,而邻数是十区间的相邻。大家看,23的邻数24是2×2×2×3的因式分解表达式。而它显然含有三个2。17的邻数16和18更是如此,因此我有理由推断质数的邻数不是单纯合数。小尼虽然没有完全证明,但是结论显而易见。

小尼说了单纯合数的情况。其实,昨天的时候就听他说过这个。因此我对这个也有自己的分析。1111的平方是1234321。你们看,1111是11和101的积。而它就是一个单纯合数,1234321就是有趣的回文数。回文是文学上一种特殊的体裁,非常考验文字组织能力。还有就是回文词语的积累。回到数学上,我认为存在有限个单纯合数的平方数是回文数。我相信这样的数是存在的,只不过还没有发现而已。就像梅森素数一样,越往后越大。既然主题是质数,那么我们就来看看我的结论。首先,我要说包含数。什么是包含数呢?如187964的包含数就有81和76还有18等等。简言之就是,它的其他排序数以及去掉一个数字后的数和其他排序数。当然也可以推广到多个。13的平方169,含有19。13的三次方2197,含有29。据此,我猜想质数的次方数的包含数里一定有个质数。埃斯皮诺萨因为身体不舒服,所以不能参加讨论。不过,他还是让我说一个结论。大家看,11和313。有什么发现?没错,它们都是回文数。据此,他推论存在有限个回文数是质数。

核桃补充说131也是,151、181、373、383都是。

……。

皇神纪  我在异界当兽医  贞观憨婿  山里来的小帅医  谢瑶楚寒  魏紫风澹渊  桃源小巫医  傲娇王爷宠不停魏紫风澹渊  武炼虚空  这个主角明明很强却异常谨慎  王牌团宠:小娇妻又被扒马甲了  魔王大人竟是我林立  最强小前锋  开局中奖一亿,我成了资本大佬  逆袭天师  墨北枭苏小鱼  掌上倾华  大明:我重生成了朱允炆  魔兽之亡灵召唤  苏辰唐依晨  

热门小说推荐
猎美玉龙

猎美玉龙

看书名就知道,我们的猪脚究竟要干什么!请耐心看下去,你不会失望的!京华市委书记的儿子荆天,16岁,仗着老子是京华市的一把手,在学校里是个问题学生,回到家却乖的不得了,这个两面少年,无意中从一枚祖传古戒中得到一种神奇的功法,从此之后,他的人生,发生了巨大的变化。学习成绩陡然上升,少女少妇看到他就美眸放光,将市委大院里的RQ收了之后,他便将魔爪伸向了校园,伸向了整个京华市的各个部门,只要他见到的美女,就想方设法归于自己麾下,邪恶而轻松的猎美之旅,充满着令人拍案的奇妙遭遇,是艳遇还是刻意追求?敬请期待...

功夫皇帝逍遥游(功夫皇帝艳福星)

功夫皇帝逍遥游(功夫皇帝艳福星)

一个落魄的大学生阴差阳错地灵魂穿越到了古代,稀里糊涂地做了皇子,又发动政变赶走太子当上了皇帝,从此便过上了锦衣玉食声色犬马的生活。但他却不满足,他要做一个全能型的功夫皇帝因此,他拜武林宗师学习武功,又向江湖术士讨取御女秘方,美艳绝伦的妃子欲望强烈的宫女温婉恬静的皇后妖艳迷人的异族美女野性十足的江湖侠女,各种类型的美女纷纷被他男人的功夫征服金钱权利和美女一个都不能少!想爽的,还等什么呢?本书保证精彩,敬请放心收藏,推荐!...

快穿:我只想种田

快穿:我只想种田

别被书名骗了,取名废,其实就是女强无CP,村姑背景系统逆袭流,也俗称慢穿泥石流,凶杀末世武侠仙侠魔法啥都有,还有,新书820不见不散。官方群满一千粉丝值进(五九零六五三四八三)后援群,满一万粉丝值进VIP群。PS本文无CP...

村野小邪医

村野小邪医

段飞是个倒霉的孩子,老爹被人陷害入狱,又遭遇对象退婚,开间小诊所给村里的人治病,连温饱都不行。可他从未放弃过努力,他坚信只要人不死,必定有站在人生巅峰的那天,最后他用枚小小的银针走上复仇之路,凭精湛的针灸获得无数美女青睐陪伴。这是个励志故事,段飞的崛起之路经受无数阴谋陷害,可他为了坚守正义毫不畏惧,视死如归跟邪恶力量做斗争。...

八零小军妻

八零小军妻

养父母待她如珠如宝,她却心心念念的想要回到抛弃她待她如糠如草的亲生父母身边儿,犯蠢的后果就是养母死不瞑目,养父断绝来往,她,最终惨死车轮下重来一次,她要待养父母如珠如宝,待亲生父母如糠如草!至于抢她一切的那个亲姐姐,呵,你以为还有机会吗?哎哎哎,那个兵哥哥,我已经定亲了,你咋能硬抢?!哎哎哎...

我的绝美御姐老婆

我的绝美御姐老婆

聚焦巅峰火爆畅销他是世界闻名的巅峰杀手,却被家族逼婚,与美女总裁住在了一起。彼此看不顺眼却又不得不同居,萧凡决定回学校散散心,可是...

每日热搜小说推荐